An I/O Project: Building a Command Line Program
This chapter is basically a guided homework. This note would document the progress of me folling the guide.
Accepting Command Line Arguments
use std::env;
fn main() {
let args: Vec<String> = env::args().collect();
dbg!(args); // (1)
let query = &args[1]; // (2)
let file_path = &args[2];
println!("Searching for {}", query);
println!("In file {}", file_path);
}-
Debug trait is defined for vector, while the normal display one is not. Make sense.
-
What if we change this to
args[1]? There will be an error “Cannot move out of index of Vec”. This is there because a borrowed value cannot be move out, and the index operation does return a reference, so it’s borrowed. It make sense because it’s strange that some value in a vector is moved out while others are not.
Reading the file + refactor
See [This part in Chapter 7] for the organization of the code: a main.rs and a
lib.rs, each with the name of the package, and the main.rs use lib.rs just
like any other normal client.
=== “main.rs”
```rust
use std::env;
use std::error::Error;
use std::fs;
use std::process;
use minigrep::Config; // (1)
fn run(config: Config) -> Result<(), Box<dyn Error>> { // (2)
println!("Searching for {}", config.query);
println!("In file {}", config.file_path);
let contents = fs::read_to_string(config.file_path)?;
println!("With text:\n{contents}");
Ok(())
}
fn main() {
let args: Vec<String> = env::args().collect();
let config = Config::build(&args).unwrap_or_else(|err| { // (3)
println!("Problem parsing arguments: {err}");
process::exit(1);
});
if let Err(e) = run(config) { // (4)
println!("Application error {e}");
process::exit(1);
}
}
```
1. Note how stuff in `lib.rs` is imported to the namespace via `minigrep::`, not
`lib::`. That's because we got a crate for the binary and a crate for the
lib. Here we're just refering to the lib crate.
2. `()` means unit type, which is `void` in C++. `Box<dyn Error>` means any
Error that implements `Error` traint. More on that later. Note with this
here, we cannot return stuff like `Err("Hey hey")`, as the `str` type is used
as `E` in the generic data type in `Result<T, E>`, and it dose not implement
the `Error` trait. We don't enforce the `E` type to implement `Error`.
3. `unwrap_or_else` hasn't been covered yet. This is equivalent to this in C++:
```c++
const auto status_result = some_operation();
if (!status_result.ok()) {
handle_it();
}
```
4. No need to `unwrap_or_else` here since we don't need the return value.
=== “lib.rs”
```rust
pub struct Config {
pub query: String,
pub file_path: String,
}
impl Config {
pub fn build(args: &[String]) -> Result<Config, &'static str> { // (1)
if args.len() < 3 {
return Err("Not enough arguments");
}
Ok(Config {
query: args[1].clone(), // (2)
file_path: args[2].clone(),
})
}
}
```
1. string literals have lifetime of `'static'`. It's a const string slice, represented as `&str`. As far as I know there's only const static string slice and the ones pointing inside `String`.
2. use `clone` here so the lifetime can be detached from the input args, and now `Config` is the owner of the strings.
Add functionality and test
pub fn search<'a>(query: &str, content: &'a str) -> Vec<&'a str> { // (1)
let mut result = Vec::new();
for line in content.lines() {
if line.contains(query) {
result.push(line); // (2)
}
}
result
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn one_result() {
let query = "duct"; // (3)
let contents = "\
Rust:
safe, fast, productive.
Pick three.";
assert_eq!(vec!["safe, fast, productive."], search(query, contents));
}
}- Don’t forget the
<'a>after the function name. - No
&before the line here since it’s already a reference. - Th
\next line prevents a new line from inserted at the first line.
Rest (env var, case insensitive, stderr)
Pretty basic. Not covered here.